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Based on “self-attentive end-to-end diarization model with encoder-decoder based attractors (EDA-EEND)”
[Horiguchi, S., Fujita, Y., Watanabe, S., Xue, Y., Nagamatsu, K. (2020). End-to-End Speaker Diarization for an Unknown Number of Speakers with Encoder-Decoder Based

Attractors.]
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Figure 1: SA-EEND with encoder-decoder based attractor cal-
culation.



Proposed System FANOLabs

5 Modifications on EDA-EEND

- Conformer Encoders

- Convolutional Upsampling

- Attractor Calculation with Attentions

- Additive Margin Penalty

- Chunk Shuffling
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Gulati, Anmol, et al. "Conformer: Convolution-augmented Transformer Figure 1: Conformer encoder model architecture. Conformer

for Speech Recognition.” (2020). comprises of two macaron-like feed-forward layers with half-
step residual connections sandwiching the multi-headed self-
attention and convolution modules. This is followed by a post
layernorm.



Convolutional Upsampling =N @l

Observations:

- Each frame in EDA-EEND i1s 0.1s

- No collar in the evaluation

- Result with Low resolution => Increase in DER



Convolutional Upsampling (Cont.)
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Attractor Calculation with Attentions FANOLabs

Problems/Observations:
- Long sequence of Embeddings

- Information of the attractors passed by the Last timestamp of the Encoder Outputs.
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Figure 1: SA-EEND with encoder-decoder based attractor cal-
culation.



Attractor Calculation with Attentions FANOLabs
(Cont.)

Changes:

- Multi-head attentions as pooling mechanism to initialize hy and c,.
- Global Attentional mechanism on the Decoder.
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Additive Margin Penalty

Put Additive Margin Penalty into speaker diarization result calculation:

- All attractors are normalized
- Using PIT to obtain correct permutation of speaker labels

- Posterior probability ¢ s of speaker s at time t:

Ut,s = sigmoid(y(ejas — Yt,s + (1 - yt,s)’m))

yts € {0,1} is the label of speaker s at t, e; is the embedding at

time t, as is the attractor of speaker s, v is the scale factor, m
is the additive margin value.
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Chunk Shuffling = ANOT AL

During training, each training sample i1s a 50 seconds audio.
To Increase the combinations of different audio segments:
- divide the original recording into chunks of 10 seconds

- shuffle chunks with a probability of 0.5.
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Table: Training and validation datasets

Dataset #Mixtures
Pretraining Training Set

Librispeech Simulated (8=2, 2, 4, 6) 400,000
Pretraining Validation Set

Librispeech Simulated (8=2, 2, 4, 6) 2000
Fine-Tuning Training Set

VoxConverse Development 216
DIHARD III Development (Training) 203
DIHARD II Development Clinical 24

Fine-Tuning Validation Set
DIHARD III Development (Validation) 51



Results of Conformer and Resolution

EXp.

Table: Track 2 result of conformer and resolution experiments. “Val”
refers to our fine-tuning validation set.

Conv. DER (% JER (%

Part | Conformer | Deep Down & Up | Val ( )Eval Val = Eval

core | No No No 28.29 30.15 54.51 53.20
core Yes No No 27.18 29.03 51.94 50.86
core Yes Yes No 25.95 29.05 53.32 52.65
core Yes Yes Yes 25.06 | 27.90 | 51.85 | 52.20
full No No No 26.58 25.70 48.60 46.47
full Yes No No 25.21 24.64 45.82 44.38
full Yes Yes No 24.25 24.69 47.28 45.84
full Yes Yes Yes 22.48 | 23.05 | 45.25 | 44.93

FANO

"Deep" means that the encoder has 7 layers and hidden unit dims = 128 instead
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Results of attractor with attentions

and additive margin penalty
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Table: Track 2 result of attractor with attentions and additive margin

penalty.
part | Attractor Additive DER (%) JER (%)
| with Attention | Margin Penalty | Val Eval Val Eval

core | No No 25.06 27.90 53.32 52.20
core | Yes No 24.05 26.08 | 52.01 51.73
core | Yes Yes 22.66 | 26.12 51.43 | 50.87
full No No 22.48 23.05 47.28 44.93
full Yes No 22.25 21.65 | 45.75 44.35
full Yes Yes 21.07 | 21.70 45.17 | 43.86
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Results of chunk shuffling and
additional training

Table: Track 2 result of chunk shuffling and additional training.

FANO

“Dev” refers to original DIHARD III development set, and “Larger
Epoch” means that the pretrained model is trained with more number
of epochs.

Part Chunk Larger | DER (%) JER (%)

Shuffling | Epoch | Val Dev Eval Val Dev Eval
core | Yes No 22.32 18.33 | 24.72 51.44 42.33 | 49.75
core | Yes Yes 21.85 | 18.64 23.86 | 50.61 | 43.03 48.85
full Yes No 20.92 16.36 | 20.72 45.21 36.69 | 42.86
full Yes Yes 20.04 | 16.53 20.05 | 44.01 | 37.21 42.06
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THANK YOU!
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